Technical Acceptance of a New Engineered Materials Arresting System (EMAS)

For Immediate Release

27 March 2013

Contact: Kjell Håkon Helgesen (tel. +47 9139-7732, e-mail: kjell-hakon.helgesen@syklus.no) and Peter Sogaard (tel. +45 4516-8240, e-mail: peter.sogaard@ncf-corporate.dk)

Background

The Federal Aviation Administration (FAA) in the United States requires that commercial service airports, regulated under CFR 14 Part 139 safety rules, have a standard Runway Safety Area (RSA) where practicable. A standard RSA typically extends 1,000 feet beyond each end of the runway. The FAA has this requirement in the event that an aircraft overruns, undershoots, or veers off the side of the runway, as it provides a safe area for stopping the aircraft.

In cases where available space does not permit a 1,000 foot overrun area, the FAA may approve installation of an Engineered Material Arresting System (EMAS) as an alternative means of complying with the FAA requirements, to help decelerate or stop an aircraft that overruns the runway. EMAS uses a bed of crushable material placed at the end of a runway, which allows the tires of the aircraft to sink into the lightweight material, whereby the aircraft is decelerated as it rolls through the material.

Norwegian Glass Recycling

Norwegian Glass Recycling is one of Norway’s leading environmental services providers, who offer waste management solutions for consumer glass packaging, which is recycled into raw materials for new products. The raw material is sold to glassworks for manufacture of new glass packaging or used to produce foam glass under the brand name Glasopor, which is used as a construction material.

New EMAS design

In 2007, the US Transportation Research Board (TRB) undertook a study through its Airport Cooperative Research Program (ACRP) to develop improved civil aircraft arresting systems. The TRB/ACRP effort included an oversight panel of industry experts. NGG participated in this program by submitting an EMAS concept for evaluation, which was reviewed favorably and selected for further research. The final program recommendation in ACRP Report 29 identified the NGG EMAS concept as viable for future development.

In 2010, in cooperation with Avinor and Protection Engineering Consultants (PEC), NGG undertook a substantial research and testing effort to develop an EMAS made of Glasopor. System testing was concluded in May 2011, and the product documentation was submitted to the FAA. After thorough review and consideration, the FAA officially accepted the Glasopor EMAS as meeting the FAA requirements in Advisory Circular 150/5220-22B, Engineered Materials Arresting Systems (EMAS) for Aircraft Overruns in April 2012.

The NGG solution is comprised of the Glasopor material, a sub-structure bed for anchoring the EMAS system, and a protective cover layer. NGG believes their EMAS solution is cost effective, virtually maintenance free and has a life expectancy in excess of 20 years.

NGG has patented the new EMAS system in the United Kingdom, and has submitted patent applications for the solution world-wide. NGG is currently evaluating potential partnership opportunities to bring the new EMAS system to the world market.

For further information contact:

Kjell Håkon Helgesen
CEO, Norsk Glassgjenvinning (Norway)
Phone: +47 9139-7732
E-mail: kjell-hakon.helgesen@syklus.no

Peter Sogaard
Managing Partner, NCF/Global M&A (Denmark)
Phone: +45 4516-8240
E-mail: peter.sogaard@ncf-corporate.com

For further information see www.runwaysafe.com