Case Study | 10.10.2021
Fragment Field Modeling Using Digital Twins and Generative Adversarial Networks (GAN)
Categories
Machine Learning
Data Science
Key Technologies
Deep Learning
Digital Twin
PEC and SwRI have teamed to support development of novel weapons capabilities through advancements in digital engineering. To employ emerging weapon technologies faster, PEC is developing an accurate and effective machine-learning (ML) technique for characterizing asymmetric weapon fragment fields. The traditional approach to weapon testing, diagnostics, and fragment modeling will not work for asymmetric weapons since the fragment field differs around their azimuth. At best, asymmetric weapon testing will result in a patchwork of data collection at relatively few carefully chosen zones leaving the bulk of the fragment field uncharacterized.
Digital engineered data will be the cornerstone of a new paradigm for hypersonic asymmetric weapon characterization. The ability to synthesize digital twin fragment fields with patchwork experimental measurements will be a transformative outcome of this effort. Arena test and digital twin model data will be fused within the ML framework using: 1) a Generative Adversarial Network (GAN) to synthesis physical and digital twin data, and 2) a Bayesian Neural Network (BNN) to stochastically model fragment fields. GAN-based data synthesis will address the issue of limited experimental measurements, while BNN-based models will address the uncertainties involved.
For more information on our progress and broad range of services contact Dr. Eddie O’Hare at eohare@protection-consultants.com.